我的購物車 (0)
我的帳號資料
我的訂單紀錄
我的學校教授
我的學校課程

[ Tips ] 一分鐘使用導覽

搜尋 
請輸入欲查詢之關鍵字
 
  進階搜尋
依主題瀏覽 
依商品類型瀏覽 
依出版日期瀏覽 
依作者瀏覽(姓) 
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
V
W
Y
Z
銷售排行榜 
 您所選取的商品項目

> Prediction & Machine Learning

商品編號: 9-622-101
出版日期: 2022/03/23
作者姓名:
Bojinov, Iavor;Parzen, Michael;Hamilton, Paul J.
商品類別: Other
商品規格: 42p

再版日期: 2025/01/06
地域:
產業:
個案年度: -  

 


商品敘述:

This note provides an introduction to machine learning for an introductory data science course. The note begins with a description of supervised, unsupervised, and reinforcement learning. Then, the note provides a brief explanation of the difference between traditional statistical modeling and machine learning. Next, the note covers two models used for classification, logistic regression and decision trees. After introducing these two models, the note explains how train, validation, and holdout sets (and k-fold cross validation) are used to tune and evaluate different models. Finally, the note concludes with a discussion of different performance metrics (ROC cruves, confusion matrices, log loss) that are used to evaluate classification models.


涵蓋領域:

Data science


相關資料: